

Welcome to djangowind’s documentation!

djangowind is a Django authentication backend for Columbia University’s
CAS and WIND servers, including associated helpers.

	Basic Usage

	Admin App Integration

	Additional Behavioral Configuration
	Profile Handlers

	Affil Handlers

Basic Usage

(you will of course need django’s built in auth, sessions, and sites
apps installed. That’s done for you on a default install but if you’ve
changed things, you might need to re-enable those and do a syncdb. The
current version of djangowind works with Django 1.0)

In your django app, you’ll need to do a few things to enable it.

First, add ‘djangowind’ to INSTALLED_APPS in settings.py. Then add:

AUTHENTICATION_BACKENDS = ('djangowind.auth.WindAuthBackend','django.contrib.auth.backends.ModelBackend',)
WIND_BASE = "https://wind.columbia.edu/"
WIND_SERVICE = "cnmtl_full_np"

to settings.py. ‘django.contrib.auth.backends.ModelBackend’ is
django’s standard built-in auth backend that checks the
username/password against the database. The example config leaves that
in as the second in the AUTHENTICATION_BACKENDS. That will let you use
both WIND authentication and standard django database accounts in the
same app. If you want to restrict things to only WIND, just take out
the ModelBackend entry (be sure to leave it as a tuple or
list). WIND_BASE and WIND_SERVICE aren’t strictly necessary as those
are the defaults in the code.

Djangowind uses the django.core.context_processors.request template
context processor, so that needs to be enabled. So add the following
to your settings as well:

TEMPLATE_CONTEXT_PROCESSORS = (
 'django.contrib.auth.context_processors.auth',
 'django.template.context_processors.debug',
 'django.template.context_processors.request',
)

Now, in urls.py, add the mapping:

('^accounts/',include('djangowind.urls')),

to your urlpatterns. This will keep all the auth stuff under
‘/accounts/’ the same as the standard django auth. You can, of course,
override that behavior by using different mappings (but be careful to
also change the relevant templates if you change that). The only
other required step for basic usage is to override the default login
template (since we need to include a “login through wind” button). Add
a ‘registration/login.html’ template to your app’s templates with
content something like the following:

{% extends "base.html" %}
{% block content %}
{% if form.has_errors %}
<p>Your username and password didn't match. Please try again.</p>
{% endif %}
<form method="get" action="{{ wind_base }}login">
<input type="hidden" name="service" value="{{ wind_service }}" />
<input type="hidden" name="destination"
value="http://{{ request.get_url }}/accounts/windlogin/?next={{ next }}" />
<p>If you have a Columbia UNI, you already have an account and can
login through WIND with it</p>
<input type="submit" value="Here" />
</form>
<p>otherwise: </p>
<form method="post" action=".">
<table>
<tr><td><label for="id_username">Username:</label></td><td>{{ form.username }}</td></tr>
<tr><td><label for="id_password">Password:</label></td><td>{{ form.password }}</td></tr>
</table>
<input type="submit" value="login" />
<input type="hidden" name="next" value="{{ next }}" />
</form>
{% endblock %}

Alternatively, if that exact template code is suitable for you, you
can just make sure that djangowind’s template directory is in your
TEMPLATE_PATHS. But you’ll probably want to customize your login page.
You’ll also want to make sure that the domain is set correctly in the
Sites table for your site. At this point, everything should basically
work the same as with regular Django Auth (with obvious exceptions of
password related things) and you can refer to the documentation [http://docs.djangoproject.com/en/dev/topics/auth/]. Ie, you can use
a @login_required decorator on a view and the user will have to go
through that login screen and login via WIND to access the resource.
If you have extra fields that you want on user objects, you will
probably want to read about UserProfile [http://www.b-list.org/weblog/2006/jun/06/django-tips-extending-user-model/]
objects.

Admin App Integration

The Django admin app requires a little additional work to get it to
function properly with WIND auth. Basically, admin wants to use its
own login template instead of auth’s login template. So you need to
make an ‘admin/login.html’ template in your templates directory. Admin
doesn’t pass in a ‘next’ variable in the context, so you need to set
that to ‘/admin/’ yourself to have them redirected to the admin
interface when they log in. Once you get the admin template properly
overridden, you should be able to login through WIND and, if your user
is marked as staff or superuser, you’ll be able to get into the admin
interface.

Additional Behavioral Configuration

The configuration above is very minimal. When the user logs in through
WIND, it checks their ticket and, if valid, logs in the user. If there
isn’t an auth_user entry for that UNI, it will create one
automatically and set it’s password to django’s “not a valid password”
special value. first_name, last_name, etc will all be left blank and
wind affils will be ignored. Most of this is changeable though.

djangowind includes two different hooks for helpers (and includes a
couple basic helpers). There are profile handlers which are expected
to take care of filling in last_name, first_name, and email fields
when the user is first created and Affil Handlers which get to look at
the WIND affils and take action based on them.

Profile Handlers

djangowind includes a CDAP based profile handler that will fill in
last_name, first_name, and email fields on the user object by talking
to our CDAP service. To use it, add the following to your app’s
settings.py:

WIND_PROFILE_HANDLERS = ['djangowind.auth.CDAPProfileHandler']

CDAPProfileHandler requires restclient to be installed and
‘cdap.ccnmtl.columbia.edu’ to be properly set up in your
/etc/hosts. If we ever run the CDAP server at a different URL, you can
change the host by setting CDAP_BASE.

If you want to write your own ProfileHandler, it’s just a class with a
process(self,user) method on it. It will be passed the user object
which probably only has the username field set and will be expected to
set the other fields on the user and call .save() on it. It doesn’t
need to return anything. They just put it somewhere in your PYTHONPATH
and add it to (or replace the CDAPProfileHandler)
WIND_PROFILE_HANDLERS. If there is more than one handler in
WIND_PROFILE_HANDLERS, djangowind will go through them all in order
and give each a chance to process the user object. So keep that in
mind if you’re chaining them.

Eg, a trivial Profile Handler that gives everyone slack would look
like:

class SlackProfileHandler:
 def process(self,user):
 user.first_name = "Bob"
 user.last_name = "Dobbs"
 user.email = "bob@subgenius.org"
 user.save()

And remember that the Profile Handlers are only called up when a new
user is added (ie, they login for the first time and an entry isn’t
found in auth_users that matches their UNI).

Affil Handlers

What to do with wind affils?

Django Auth includes Groups so the natural thing would be to map wind
affils directly to groups. That’s often a good idea, but Django Auth
groups only have one ‘name’ field so that would have to be set to
match the wind affil string, which is ugly. Also, frequently we use
wind affils to map students into “classes” which is conceptually a bit
different from django auth groups. So we need a bit more flexibility
than just always doing a one to one mapping.

But that’s the simplest case, so we’ll start there. djangowind
includes a built-in AffilGroupMapper that does the simple one-to-one
mapping. To enable it, add:

WIND_AFFIL_HANDLERS = ['djangowind.auth.AffilGroupMapper']

to settings.py. Again, WIND_AFFIL_HANDLERS is a list of handler
classes. djangowind will go through them in order, giving them each a
chance to do their thing if there’s more than one in the list. Unlike
Profile Handlers, Affil Handlers are run each time the user logs in
through WIND. So if their affils change over time, it will get picked
up at the next login.

WIND also returns an affil for each user that matches their UNI. I’m
not sure exactly why they do that, but you probably don’t want to have
a django auth Group for every UNI that logs in. AffilGroupMapper
strips that UNI group out automatically. If, for some reason, you
really want those UNI groups, you can tell it not to strip them out by
setting WIND_AFFIL_GROUP_INCLUDE_UNI_GROUP to True in your
settings.py.

AffilGroupMapper also creates an ‘ALL_CU’ Group and places every user
that comes in through WIND into that group. That’s useful if you allow
both WIND logins and regular django db backed logins and want an easy
way to tell the two kinds of accounts apart.

AffilGroupMapper will only ever add the user to Groups, it will not
remove them from Groups that aren’t in the WIND affils. It’s done this
way because otherwise if you have extra django Groups that don’t map
to WIND affils, it has no way really of telling them apart and
removing the user from only the right groups. This means that it’s not
a foolproof security technique to use this mapper to check that
someone is in a class. If they login once when they’re in a class, it
will add them to that Group. Then, if they drop the class and log back
in, that class won’t be in their WIND affils, but they’ll still be in
that Group as far as Django is concerned. If you need something more
secure, you can write your own mapper (see below).

There are two other Affil Handlers that djangowind includes that are
useful. Rather than Groups, the django admin app uses two boolean
fields on the User objects to determine access, is_staff, and
is_superuser. It’s often quite useful to mark a particular WIND affil
(or affils) as admins and automatically give them access to the admin
interface. Eg, we often use tlcxml for that purpose. djangowind
includes StaffMapper and SuperuserMapper Affil Handlers to do
this. Add them to your WIND_AFFIL_HANDLERS list to use them.

StaffMapper will look for a WIND_STAFF_MAPPER_GROUPS setting, which
should be a list of WIND affil strings. Any user coming in that has
any of those affils will get their is_staff boolean field set to True
(and thus gain access to the admin interface).

SuperuserMapper does the same thing using a
WIND_SUPERUSER_MAPPER_GROUPS setting and sets the is_superuser field
to True. Superusers have access to the admin interface including the
parts that let you edit other user accounts and permissions (django
probably made you create one the first time you did a syncdb with the
admin or auth apps installed).

It’s useful to remember that both StaffMapper and SuperuserMapper
don’t throw out the UNI matching groups like AffilGroupMapper does,
so you can put UNIs in the groups lists to give specific users admin
rights. Eg, if your settings.py has:

WIND_STAFF_MAPPER_GROUPS = ['tlcxml.cunix.local:columbia.edu']
WIND_SUPERUSER_MAPPER_GROUPS = ['anp8','jb2410']

Then all CCNMTL staff will have basic staff access and Anders and
Jonah will have superuser access.

If those included helpers don’t do everything you need, you can write
your own and include it in WIND_AFFIL_HANDLERS. An Affil Handler is
just a class with a map(self,user,affils) method. ‘user’ is the Django
Auth User object, ‘affils’ is a list of wind affil strings. It’s
expected to do whatever needs to be done in terms of adding or
removing groups and setting stuff on the user object.

Eg, a stricter version of AffilGroupMapper that makes the user only
belong to the Groups that match their WIND affils would look like:

class StrictAffilGroupMapper:
 def map(self,user,affils):
 groups = []
 for affil in affils:
 try:
 group = Group.objects.get(name=affil)
 except Group.DoesNotExist:
 group = Group(name=affil)
 group.save()
 groups.append(group)
 user.groups = groups
 user.save()

Index

 nav.xhtml

 Table of Contents

 		
 Welcome to djangowind’s documentation!

 		
 Basic Usage

 		
 Admin App Integration

 		
 Additional Behavioral Configuration

 		
 Profile Handlers

 		
 Affil Handlers

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

